Статья опубликована в рамках: XLV Международной научно-практической конференции «Научное сообщество студентов: МЕЖДИСЦИПЛИНАРНЫЕ ИССЛЕДОВАНИЯ» (Россия, г. Новосибирск, 21 мая 2018 г.)
Наука: Информационные технологии
Скачать книгу(-и): Сборник статей конференции
дипломов
МЕТОДЫ ПРОГНОЗИРОВАНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ОБЪЕКТА ПРИ РАСПРЕДЕЛЕННОЙ ОБРАБОТКЕ ДАННЫХ В СЕТИ САЛОНОВ КРАСОТЫ
Задача распределения мест расположения бизнес-логики АС может быть решена с помощью прогнозирования нагрузки клиента в следующий момент времени за запуском формирования отчета АС.
АС BeautyCRM имеет двухзвенную архитектуру по принципу «толстый» клиент (рикунок 1) [1].
Рисунок 1. Способы представления двухзвенных архитектур а) сверхтонкий клиент; б) тонкий клиент; в, г – толстый клиент
Спрогнозировать техническое состояние (ТС) объекта означает определить его техническое состояние на следующий интервал времени, основываясь на исследовании полученных на основе проводимых наблюдений или спланированного эксперимента тщательно отобранных данных [2].
Целью прогнозирования является определение интервала времени, в течение которого сохранится зафиксированное в данный момент состояние объекта или состояние работоспособности.
При решении задач прогнозирования используется интерполяция, при которой определяются значения функции по некоторым известным ее значениям внутри исследуемой области, и экстраполяция, в рамках которой определяются значения функции за пределами интервала, где известны ее значения [4].
В зависимости от используемого в вычислениях математического аппарата различают:
1) прогнозирование на основе методов экспертных оценок;
2) прогнозирование на основе методов экстраполяции трендов;
3) прогнозирование на основе методов регрессионного анализа.
Проведем общую характеристику данных методов прогнозирования.
Методы экспертных оценок основаны на учете субъективного мнения экспертов о будущем периоде времени. Для данной группы методов характерно предсказание будущего, в основе которого закладываются рациональные доводоы и интуитивные знания. Данные методы успешно применяются для краткосрочного, среднесрочного и долгосрочного прогнозирования.
Методы экстраполяции трендов задействуют статистическое наблюдение за динамикой выбранного показателя, определение тенденций его развития и продолжение этих тенденций в будущем периоде, т.е. закономерность прошлого развития объекта переносится на будущий период времени. Обычно применяются в краткосрочном прогнозировании при минимальных изменениях в исследуемой среде.
Методы регрессионного анализа исследуют зависимость определенных величин от других. Применяются для прогноза на средне- и долгосрочный периоды, что дает возможность установления изменений в среде бизнеса и учета влияний этих изменений на выбранный показатель.
В результате проведенного сравнения методов прогнозирования был сделан выбор в пользу прогнозирования на основе методов экстраполяции трендов, а именно прогнозирование временного ряда с использованием экспоненциального сглаживания по методу Брауна, так как данный метод позволяет с наибольшей вычислительной эффективностью прогнозировать состояние объекта в краткосрочной перспективе и дает возможность учитывать веса исходной информации [5].
С помощью выравнивания или сглаживания временного ряда производится выявление и анализ заключающейся в нем тенденции. Экспоненциальное сглаживание рассматривается как фильтр, на вход которого постепенно подаем члены исходного ряда и на выходе получаем текущие значения экспоненциальной средней.
Пусть дан определенный временной ряд .
Экспоненциальное сглаживание данного ряда будет осуществляться по рекуррентной формуле (1):
, . (1)
Чем меньше α, тем в лучше отсеиваются колебания ряда исходных данных и шума. При последовательном использовании рекуррентного соотношения экспоненциальную среднюю выражают через значения временного ряда X. Если к моменту запуска исследования имеются более ранние данные, то в качестве начально подаваемого на вход системы значения используется арифметическая средняя всех имеющихся данных или определенной их части.
Пусть дан определенный временной ряд: . При этом существует необходимость в решении задачи прогнозирования временного ряда. В этом случае следует найти горизонты прогнозирования . Для чего следует (2)
(2)
Вводим последовательность весов, невозрастающую по всему ряду, , чтобы учитывать устаревание данных, тогда (3)
(3)
Значение D невелико при краткосрочном прогнозировании, поэтому для решения поставленной задачи воспользуемся моделью Брауна (4):
(4)
Рассмотрим прогноз на шаг вперед, где учтем - погрешность этого прогноза, а прогноз на следующий момент времени получится в результате корректировки исходного прогноза с учетом ошибки, в чем и заключается смысл адаптации.
В краткосрочном прогнозировании необходимо как можно скорее внести новые измерения и в то же время как можно лучше отфильтровать случайные колебания исследуемого показателя, для чего следует увеличиваем вес более свежих наблюдений: . Однако α необходимо уменьшить для сглаживания случайных отклонений: .
Таким образом, поставленные условия противоречат друг другу, следовательно для решения задачи оптимизации модели необходимо найти компромиссное значение α.
При прогнозировании данным методом необходимо обратить внимание на два момента:
- выбор значения параметра сглаживания α;
- определение начального значения Уo.
Величина α характеризует скорость снижения веса влияния предыдущих наблюдений. Чем больше значение α, тем меньше влияют предшествующие наблюдения. При значении α, близкому к единице, учитываются в основном влияния лишь последних наблюдений. При значении α, близкому к нулю, веса, по которым взвешиваются уровни временного ряда, начинают убывать медленно, таким образом в прогнозе учитываются почти все прошлые наблюдения.
Таким образом, при существовании уверенности в достоверности начальных условий, на основании которых разрабатывается прогноз, следует использовать небольшую величину параметра сглаживания (α→0). При малой величине параметра сглаживания исследуемая функция ведет себя как средняя из большого числа предшествующих уровней. При недостаточной или отсутствующей уверенности в начальных условиях прогнозирования необходимо использовать большую величину α, что приведет к учету при прогнозе влияния свежих наблюдений.
В литературе не выделяют точный метод для выбора оптимальной величины параметра сглаживания α [3]. В отдельных случаях автор данного метода профессор Браун предлагал определять величину α, опираясь на длину интервала сглаживания. При этом α вычисляется по формуле (5):
(5)
где n – число наблюдений, входящих в интервал сглаживания.
Задача выбораregion экспоненциально взвешенного среднего начального (Уo) решается несколькими способами: если есть данные о развитии явления в прошлом, то можно воспользоваться средней арифметической и приравнять к ней Уo; если таких сведений нет, то в качестве Уo используют исходное первое значение базы прогноза У1; использование экспертных оценок.
Во время изучения экономических временных рядов и прогнозирования экономических процессов метод экспоненциального сглаживания не всегда применим. Что обуславливается тем, что экономические временные ряды бывают слишком короткими (до 25 наблюдений), и в случае быстрых темпов роста исследуемого показателя данный метод не в состоянии отразить все изменения. Однако точность прогноза остается удовлетворительной, так как средняя относительная ошибка находится в пределах 20-30%.
Таким образом, в результате научно-исследовательской работы для решения задачи распределения мест расположения бизнес-логики АС BeautyCRM был выбран алгоритм прогнозирования экспоненциального сглаживания по методу Брауна.
Список литературы:
- Хамидулина Ю.А. Автоматизация распределенной обработки данных в сети салонов красоты // Научное сообщество студентов: МЕЖДИСЦИПЛИНАРНЫЕ ИССЛЕДОВАНИЯ: сб. ст. по мат. XLV междунар. студ. науч.-практ. конф. № 10(45).
- Коровин Я.С. Система поддержки принятия решений /Коровин Я.С. // Материалы конференции. -2007. -№1. - с. 80-85.
- Царегородцева Е. Д., Сравнение различных методов расчета // XVII Туполевские чтения: Международная молодежная конференция, 24-26 мая 2011 года: Материалы конференции. Том IV. Казань: Изд-во Казан. гос. техн. ун-та. 2011. С.175-176.
- Пулкова К. А., Методы классической и современной теории автоматического управления: учебник в 5-и т.т.; 2-е изд., перераб. и доп. Т.1: Математические модели, динамические характеристики и анализ систем автоматического управления / Под ред. К.А. Пулкова, И. Д. Егупова. – М.: Издательство МГТУ им. Н.Э. Баумана, 2004. – 656 с.
- Коровин, Е. Н. Методология прогнозирования и оптимального управления территориально распределенными социально-экономическими системами на основе трансформации информации и многовариантного моделирования : Дис. доктора техн. наук. Воронеж, 2005. - 356 с.
дипломов
Оставить комментарий