Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: XXXI Международной научно-практической конференции «Естественные и математические науки в современном мире» (Россия, г. Новосибирск, 03 июня 2015 г.)

Наука: Математика

Секция: Вещественный, комплексный и функциональный анализ

Скачать книгу(-и): Сборник статей конференции

Библиографическое описание:
Шабанова Г.И. ИССЛЕДОВАНИЕ ОБРАТНОЙ ЗАДАЧИ ШТУРМА-ЛИУВИЛЛЯ В СИНГУЛЯРНОМ СЛУЧАЕ // Естественные и математические науки в современном мире: сб. ст. по матер. XXXI междунар. науч.-практ. конф. № 6(30). – Новосибирск: СибАК, 2015.
Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

 

ИССЛЕДОВАНИЕ  ОБРАТНОЙ  ЗАДАЧИ  ШТУРМА-ЛИУВИЛЛЯ  В  СИНГУЛЯРНОМ  СЛУЧАЕ

Шабанова  Галина  Ивановна

ст.  преподаватель,  Сибирский  Автомобильно-Дорожный  Институт  (СибАДИ),  каф.  Высшей  математики,  Р/,  г.  Омск

E-mail:   gal_schabanowa2014@yandex.ru

 

THE  STUDY  OF  THE  INVERSE  STURM-LIOUVILLE  PROBLEM  IN  THE  SINGULAR  CASE

Schabanowa  Galina 

senior  lecturer  Siberian  Automobile  and  highway  Institute  (SibADI),  Department  of  mathematics,  Russia,  Omsk

 

АННОТАЦИЯ

В  статье  исследуются  вопросы,  связанные  с  восстановлением  решения  обратной  задачи  Штурма-Лиувилля  на  полупрямой    по  спектральной  функции  оператора  в  специальных  классах  функций.  Между  классами  функций,  содержащих  искомый  коэффициент  и  спектральную  функцию,  установлено  взаимно  однозначное  соответствие.

ABSTRACT

This  article  examines  the  issues  associated  with  the  reconstruction  of  the  solution  of  the  inverse  Sturm-Liouville  problem  on  the  half  line  y≥0  the  spectral  function  of  the  operator  in  special  classes  of  functions.  Between  classes  of  functions  containing  the  desired  ratio  and  the  spectral  function,  set  bijection.

 

Ключевые  слова :  задача  Штурма-Лиувилля;  дифференциальный  оператор;  лемма;  спектральная  функция  оператора.

Keywords:   Sturm-Liouville  problem;  differention  operator;  lemma;  the  spectral  function  of  the  operator.

 

Рассмотрим  задачу  Штурма-Лиувилля

 

  (1)

  (2)

 

в  интервале  [0,]. 

Дополним  начальные  условия  (2)  граничным  условием    (3)

Отметим  свойство  собственных  чисел    оператора    где  наименьшее  значение  функции    в  интервале  [0,],    и  [6,  c.169].  Основные  спектральные  соотношения  для  сингулярного  оператора    получим  из  соотношений  в  регулярном  случае,  решая  задачу  (1)-(2)  в  интервале    и  устремляя    к  бесконечности. 

Лемма  1  (о  предельной  точке  спектра  оператора 

Пусть  в  задаче  (1)-(2)    (4)

  Пусть    имеет  абсолютный  минимум.    при  больших  значениях    принимает  отрицательные  значения  и  монотонно  стремится  к  нулю: 

  Тогда  все  собственные  числа  сингулярного  оператора    за  исключением  быть  может    положительны  и  предельная  точка  спектра.

Доказательство.  Рассмотрим  три  задачи  Штурма-Лиувилля  в  интервале  монотонного  возрастания 

  (5)

  (6)  2.    и  3.с  теми  же  условиями  (5),  (6).

Обозначим  собственные  значения  приведенных  выше  задач  через    Имеет  место  неравенство    [6,  c.  175].  (7)

Перейдем  к  переменной    Решение  задачи  2  в  новых  переменных  имеет  вид  Y.  Подчиняя    граничному  условию  (6)    получим  собственные  числа 

    и,  аналогично,    Из  оценки  (7)  собственных  значений  задачи  1 

    (8) 

и  теоремы  Штурма  о  разделении  нулей  следует  существование  бесчисленного  множества  собственных  значений  у  исходной  задачи,  а  также  предельные  соотношения    Если    возрастает,  то    монотонно  убывает.  Полагая  в  (8)    и  учитывая  поведение  при  ,  усилим  неравенство

 

Устремляя    к  бесконечности,  получим   

Классы  функций

Определение  1.  Пусть    удовлетворяет  следующим  требованиям: 

1. 

2.    имеет  абсолютный  минимум: 

3.  При  больших  значениях    принимает  отрицательные  значения  и  монотонно  стремится  к  нулю:   

4.  Последовательность  элементов  линейного  нормированного  пространства

  сходится  в    к  элементу  этого  пространства    по  норме:   

Совокупность  функций    со  свойствами  1—4  составляет  класс   

Определение  2.  За  класс    примем  множество  целых  функций  класса    таких,  что 

Если  последовательность  финитных  функций  (4)  сходится  по  норме  к    и    непрерывна  в  каждом  конечном  интервале,  то,  по  первой  теореме  Хелли  [1,  c.  236],  из  последовательности  соответствующих  спектральных  функций  оператора    монотонных,  неубывающих  и  ограниченных  в  совокупности  на  всюду  плотном  множестве  можно  извлечь  по  крайней  мере  одну  подпоследовательность    сходящуюся  в  основном  к  некоторой  неубывающей  функции    (т.е.  в  точках  непрерывности  ).  Построим    оператора    с  коэффициентом  .  Вычислим  и  преобразуем 

   

  где    и    одновременно  в  нуль  не  обращаются  [3,c.269].    . 

Как  известно,    (9) 

Преобразуем  по  определению,  учитывая  формулу  для  собственных  значений  [3,  c.270]    (10)

  (11) 

В  равенстве  (9)  перейдем  к  пределу,  учитывая  (11)  и  вторую  обобщенную  теорему  Хелли  [1,  c.  239]. 

    Из  последнего  равенства  выводим  дифференциал  спектральной  функции    .  Функции 

  

    являются  непрерывными  функциями    т.к.  интегралы  равномерно  сходятся  при    Приведем    к  виду 

.  Тогда    (12) 

Из  определения    и  формулы  (10)  следует

  спектральная  функция    с    Следовательно, 

    и  для  всех    (13) 

Функции    фактически  зависят  от  аргумента    поэтому    (14)

Поскольку    возрастает,    (15)

Отметим  свойства    1.    непрерывна  при 

  (16) 

  монотонно  убывает  на  сегменте  [0,.  В  силу  (13)  и  (14)   

3.    абсолютно  непрерывная  функция.  В  силу  (15),  (13)  и  (14)

    Функции  с  ограниченной  производной  составляют  класс  абсолютно  непрерывных  функций  [5,  c.  194]. 

4.  Любая  абсолютно  непрерывная  функция  является  функцией  ограниченной  вариации  и  имеет  абсолютно  интегрируемую  производную:  .

Лемма  2  (о  структуре  спектральной  функции  )

Если    то  спектральная  функция  сингулярного  оператора 

  имеет  вид  (12).  Функция    зависит  от  аргумента  ,  является  монотонно  убывающей  и  абсолютно  непрерывной  на  интервале  [0,).

Определение  3.  Пусть    и  спектральная  функция  сингулярного  оператора    Множество  функций    составляет  класс    если: 

1.    в  основном,  т.  е.  в  точках  непрерывности   

2.    определяется  формулой  (12).

3.  монотонно  убывает  в  интервале  [0,).

4.    абсолютно  непрерывна.

Определение  4.  Все  спектральные  функции  класса    с  целой  функцией    в  интервале    образуют  класс 

Изоморфизм  классов  функций

Лемма  3  (аналитичность   

Если    и  является  целой  в  интервале  ,  то  соответствующая  спектральная  функция  оператора    и  имеет  целую  функцию    в  интервале  .  Обратное  утверждение  верно.

Доказательство.  Формула  (14)  устанавливает  взаимно  однозначное

соответствие  между    и    Всякую  целую  функцию  в  области 

можно  разложить  в  степенной  ряд    сходящийся  во  всей  области 

и  обратно,  всякая  функция,  представимая  в    сходящимся  степенным  рядом,  является  целой  [2,  c.83].  Если  целая  функция,  то    в  формуле  (14),  а  также    являются  целыми.  Функция    может  быть  разложена  по  степеням  в  окрестности  точки    причем    Функция    также  представима  степенным  рядом  с  центром  в  нуле    В  силу  четности    ряд  Маклорена  для    содержит  только  четные  степени   

 

 

коэффициенты  разложения.  аналитическая  в  точке    т.  к.  на  полупрямой    она  представляется  сходящимся  степенным  рядом. 

Доказательство  обратного  утверждения  непосредственно  следует  из  схемы  восстановления    по  известной  спектральной  функции.

Схема  определения 

При  решении  обратной  задачи  Штурма-Лиувилля  И.М.  Гельфанд  Б.М.

Левитан  [4,  c.  418]  исходили  из  того,  что  существует  функция    такая  что    (17)

    (18)

Функция    удовлетворяет  также  и  линейному  интегральному

уравнению    в  области    (19)

Функция    cуществует  и  непрерывна  для  всех  значений  аргументов,  если    ведет  себя  на  бесконечности  достаточно  правильно,  например,   

Найдем  потенциал  уравнения  (1)  по  формуле  (18).  Определим  ядро 

интегрального  уравнения  (19),  решая  задачу  (17)—(18)  методом  Фурье.  Пусть    После  подстановки  решения  и  частных

производных  второго  порядка  в  (17)  получим  равенство,  справедливое  лишь

  в  том  случае,  если  его  правая  и  левая  части  не  зависят  ни  от,  ни  от    а  равны  постоянному  числу:    Имеем  задачу  Штурма-Лиувилля    и  задачу  Коши    Очевидно,    Из  граничного  условия    получим  собственные  значения

    (20) 

Тогда    Подставим    в  интегральное  уравнение  Вольтерра  (19). 

  (21) 

Интегральный  член    полученного  уравнения  можно  преобразовать,  учитывая  связь  между  собственными  числами  (20)  и  собственными  числами 

исходной  задачи  (1)-(3)   

 

  После  предельного  перехода  в  (21),  устремляя    получим  решение  интегрального  уравнения    (22)

Лемма  4  (формула  для  определения  потенциала)

Потенциал    в  задаче  (1),  (2)  на  полупрямой    восстанавливается  единственным  образом  в  классе  функций    ()  по    ()  формулой  ,  где   

Лемма  5  (об  изоморфизме  классов  функций)

Между  классами  функций    и    и    устанавливается  взаимно  однозначное  соответствие.  Спектральная  функция    сингулярного  оператора    обладает  свойствами  класса()  тогда  и  только  тогда,  когда  потенциал    принадлежит  классу    ().

Доказательство.  Прямое  утверждение  доказано  выше.  Пусть  теперь    ().  Последовательность  решений  (21)    сходится  к  функции    равномерно  на  множестве    ().  Для  всех    всех  натуральных    и  всех    Последовательность  можно  дифференцировать  почленно  в  интервале  (0,),  Функции    отличаются  на  константу  и  имеют  равные  производные  всюду,  где  эти  функции  определены:    Поэтому 

Определим  асимптотическое  поведение    По  лемме  4 

  2  При  больших  значениях    (

Из  теоремы  Вейерштрасса  известно:  всякая  непрерывная  на  конечном  сегменте  [0,]  функция  ограничена  на  этом  сегменте  и  достигает  на  нем  своей  нижней  грани    и  верхней  грани.  Спектральные  функции  класса   

()  имеют  правую  предельную  точку    следовательно,  существует    Ясно,  что    и  в  силу  свойств   

Доказанные  леммы  могут  оказаться  полезными  при  решении  обратных  задач  математической  физики,  редуцируемых  к  обратной  задаче  Штурма-Лиувилля.

 

Список  литературы:

1.Гнеденко  Б.В.  Курс  теории  вероятностей.  Издательство  «Наука»,  Москва.1969.  —  400  с.

2.Лаврентьев  М.А.  и  Б.В.  Шабат.  Методы  теории  функций  комплексного  переменного.  Издательство  «Наука»,  Москва.1973.  —  736  с.

3.Левитан  Б.М.,  И.С.  Саргсян.  Введение  в  спектральную  теорию.  Издательство  «Наука»,  Москва.  1970.  —  671  с.

4.Наймарк  М.А.  Линейные  дифференциальные  операторы.  Издательство  «Наука»,  М.  1969.  —  528  с.

5.Соболев  В.И.  Лекции  по  дополнительным  главам  математического  анализа.  Издательство  «Наука»,  М.  1968.  —  288  с. 

6.Цлаф  Л.Я.  Вариационное  исчисление  и  интегральные  уравнения.  Издательство  «Наука»,  М.  1979.  —  191  с.

Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

Оставить комментарий

Форма обратной связи о взаимодействии с сайтом
CAPTCHA
Этот вопрос задается для того, чтобы выяснить, являетесь ли Вы человеком или представляете из себя автоматическую спам-рассылку.