Телефон: 8-800-350-22-65
WhatsApp: 8-800-350-22-65
Telegram: sibac
Прием заявок круглосуточно
График работы офиса: с 9.00 до 18.00 Нск (5.00 - 14.00 Мск)

Статья опубликована в рамках: XLII Международной научно-практической конференции «Инновации в науке» (Россия, г. Новосибирск, 25 февраля 2015 г.)

Наука: Математика

Скачать книгу(-и): Сборник статей конференции

Библиографическое описание:
ДОКАЗАТЕЛЬСТВО СУЩЕСТВОВАНИЯ РЕШЕНИЯ ИНТЕГРАЛЬНОГО УРАВНЕНИЯ ВОЛЬТЕРРА С ФУНКЦИЕЙ ЛЕЖАНДРА В ЯДРЕ // Инновации в науке: сб. ст. по матер. XLII междунар. науч.-практ. конф. № 2(39). – Новосибирск: СибАК, 2015.
Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

 

ДОКАЗАТЕЛЬСТВО  СУЩЕСТВОВАНИЯ  РЕШЕНИЯ  ИНТЕГРАЛЬНОГО  УРАВНЕНИЯ  ВОЛЬТЕРРА  С  ФУНКЦИЕЙ  ЛЕЖАНДРА  В  ЯДРЕ

Вагапов  Винер  Зуфарович

канд.  физ.-мат.  наук,  доцент  Стерлитамакского  филиала  Башкирского  государственного  университета,  РФ,  Республика  Башкортостан,  г.  Стерлитамак

E-mail: 

 

THE  PROOF  OF  EXISTENCE  OF  THE  SOLUTION  OF  THE  INTEGRAL  EQUATION  OF  VOLTERRA  WITH  THE  FUNCTION  OF  LEGENDRE  IN  THE  KERNEL

Viner  Vagapov

candidate  of  Physical  and  Mathematical  Sciences,  associate  professor  of  Sterlitamak  branch  of  Bashkir  State  University,  Russia,  Republic  of  Bashkortostan,  Sterlitamak

 

АННОТАЦИЯ

Статья  посвящена  доказательству  существования  решения  интегрального  уравнения  Вольтерра  первого  рода  с  функцией  Лежандра  в  ядре. 

ABSTRACT

Article  is  devoted  to  the  proof  of  existence  of  solution  of  Volterra  integral  equation  of  the  first  kind  with  the  function  of  Legendre  in  the  kernel. 

 

Ключевые  слова:  интегральное  уравнение  Вольтерра;  функция  Лежандра  в  ядре.

Keywords:  Volterra  integral  equation;  function  of  Legendre  in  the  kernel.

 

В  работе  [2]  было  доказана  единственность  решения  интегрального  уравнения

 

 

где    —  функция  Лежандра  [1,  гл.  3].  Используя  связь  между  функциями  Лежандра  и  гипергеометрической  функцией  Гаусса  [1,  гл.  2],  уравнение  (1)  было  сведено  к  уравнению 

 

 

где  .  Воздействуя  на  уравнение  (2)  специально  подобранным  интегральным  оператором,  была  получена  формула

 

 

где    —  гипергеометрическая  функция  двух  переменных,  введенная  профессором  В.Ф.  Волкодавовым  [3].

Тем  самым  была  доказана  единственность  решения  уравнения  (1).  Перейдем  к  доказательству  существования  решения  уравнения  (1).  Для  этого  подставим  функцию  ,  определяемую  формулой  (3),  в  левую  часть  уравнения  (2).  Получим

 

 

где 

 

 

В  выражении  для    функцию  Гаусса  разложим  в  степенной  ряд  по  ,  а  функцию  —    и    и  поменяем  порядок  интегрирования  и  суммирований,  будем  иметь

 

 

Вычислим  последний  интеграл  с  помощью  подстановки    и  запишем  выражение  для    в  виде

 

 

После  применения  к  функции  Гаусса  формулы  Больца  (4)  [1,  п.  2.9]  получим 

 

 

Разложим  полученную  функцию  Гаусса  в  степенной  ряд  по  k,  поменяем  порядки  суммирований  и  воспользуемся  представлением  функции    в  виде  суммы  двойного  ряда  (6)  [1,  п.  5.7]:

 

 

К  функции    применим  формулу  вырождения  (11)  [1,  п.  5.10]  и  учтем,  что    Тогда  в  силу  формулы  (4)  [1,  п.  2.8]  окончательно

 

 

Приступим  к  вычислению  .  В  повторном  интеграле  изменим  порядок  интегрирования,  разложим  гипергеометрические  функции  в  степенные  ряды  и  поменяем  порядки  интегрирования  и  суммирований.  После  вычисления  получившегося  внутреннего  интеграла  с  помощью  замены  переменной    имеем

 

 

К  функции  Гаусса  применим  формулу  Больца  (4)  [1,  п.  2.9],  полученную  функцию  Гаусса  разложим  в  степенной  ряд  по  n  и  поменяем  порядки  суммирований:

 

 

Учитывая  формулу  (11)  [1,  п.  5.10]  и  то,  что  ,  получаем

 

 

или  в  силу  формулы  (4)  [1,  п.  2.8]  окончательно  имеем

 

 

С  учетом  найденного  выражение  для    становится  следующим:

 

 

Подставляя  (5)  и  (6)  в  правую  часть  равенства  (4),  убеждаемся,  что  функция  (3)  действительно  обращает  уравнение  (2)  в  тождество.

Возвращаясь  в  (3)  к  первоначальным  обозначениям,  получаем  формулу  обращения  для  интегрального  уравнения  (1):

 

 

Список  литературы:

1.Бейтмен  Г.,  Эрдейи  А.  Высшие  трансцендентные  функции.  Т.  1.  Гипергеометрическая  функция.  Функции  Лежандра.  М.:  Наука,  1973.  —  295  с.

2.Вагапов  В.З.  Доказательство  единственности  решения  интегрального  уравнения  Вольтерра  с  функцией  Лежандра  в  ядре  //  «Современная  наука:  актуальные  проблемы  и  их  решения»:  сборник  научных  статей  XIV  Международной  научной  конференции.  Липецк:  ООО  «Максимал  информационные  технологии»,  2015.  —  С.  6—12.

3.Волкодавов  В.Ф.,  Николаев  Н.Я.  Об  одной  специальной  функции  двух  аргументов,  встречающейся  при  решении  краевых  задач  //  Аналитические  методы  решения  дифференциальных  уравнений.  Куйбышев:  Куйбыш.  гос.  ун-т,  1986.  —  С.  42—46. 

Проголосовать за статью
Дипломы участников
У данной статьи нет
дипломов

Оставить комментарий