Статья опубликована в рамках: XXVII Международной научно-практической конференции «Естественные и математические науки в современном мире» (Россия, г. Новосибирск, 04 февраля 2015 г.)
Наука: Математика
Секция: Геометрия и топология
Скачать книгу(-и): Сборник статей конференции
- Условия публикаций
- Все статьи конференции
дипломов
Статья опубликована в рамках:
Выходные данные сборника:
ИНВАРИАНТНЫЕ НОРМАЛИЗАЦИИ СКОМПОНОВАННОГО ГИПЕРПЛОСКОСТНОГО РАСПРЕДЕЛЕНИЯ ПРОЕКТИВНОГО ПРОСТРАНСТВА
Будылкин Андрей Александрович
аспирант Балтийского федерального университета имени И. Канта, РФ, г. Калининград
E -mail: AndreyBudylkin@rambler.ru
INVARIANT NORMALIZATION COMPOSITED HYPERPLANE DISTRIBUTION OF PROJECTIVE SPACE
Budylkin Andrey
graduate student of Baltic federal university of I. Kant, Russia, Kaliningrad
АННОТАЦИЯ
В статье приведено задание SH-распределения, доказательство теоремы существования в репере нулевого порядка. Получены инвариантные нормализации и соответствия Бомпьяни-Пантази основных структурных подрасслоений. Изучение SH-распределений актуально, так как эти образы являются обобщениями теории специальных классов гиперполос [7] и гиперповерхностей, а также гиперполосных распределений [8], которая имеет приложение в вариационном анализе, физике, механике [1], [2], [9]. Работа выполнена методом Лаптева Г.Ф.[3] Индексы принимают следующие значения: i,j,k,…= ; α,β,…=; σ,ρ,…= ; I,J,K,…= ; ,,,…= .
ABSTRACT
The article gives the task SH-distribution, the proof of the existence in the frame of order zero. The invariant normalization and matching Bompiani-Pantazi major structural sub-bundles. The study of SH-distributions is relevant, because these images are generalizations of special classes hyperbands and hypersurfaces, and hyperband distribution, which has application in the analysis of variance, physics, mechanics. Work performed by GF Laptev method. The indices have the following values: i,j,k,…= ; α,β,…=; σ,ρ,…= ; I,J,K,…= ; ,,,…= .
Ключевые слова: распределения; тензор; квазитензор; нормализация.
Keywords: distribution; tensor; kvazitensor; normalization.
§ 1. Задание скомпонованного SH-распределения проективного пространства Pn в репере R0. Теорема существования
В проективном пространстве Pn рассмотрим тройку распределений плоскостей: Λ — распределение m — мерных плоскостей ; L — распределение (n-m-1) – мерных плоскостей ; H — распределение гиперплоскостей , элементы которых в каждом центре удовлетворяют соотношениям:
[L(A);Λ(A)]=H(А); L(A)Λ(A)=А. (*)
Определение. Тройка распределений плоскостей Λ-, L-, Н-проективного пространства Рn, удовлетворяющая условиям (*) называется скомпонованным гиперплоскостным [6] распределением (или коротко SH–распределением). Выберем подвижной репер пространства R0={}(0-го порядка), ассоциированный с SH–распределением:
{} Λ(), {} L(), Hn-1().
SH -распределение в этом репере R0 задается дифференциальными уравнениями:
(1)
(2)
,
где функции , , , не симметричны по нижним индексам K,L.
Имеет место теорема существования SH-распределений:
Теорема 1. В n-мерном проективном пространстве скомпонованное гиперплоскостное SH-распределение в репере нулевого порядка существует с произволом ((2m+1)(n-m-1)+m) функций n аргументов.
Замыкание системы (1) можно представить в виде:
(3)
Определим характеры этой системы:
S1= S2= Sn=m+(2m+1)(n-m-1)B,
Подсчитаем число Картана для этой системы [10]
Q=S1+2S2+…+nSn= (1+2+…+n)B=B.
Разрешим систему (3) по лемме Картана [10]:
Найдем число линейно-независимых функций, стоящих в правых частях этой системы. Их число равно N=B. Так как Q=N, то система (1), (2) находится в инволюции[10]. Решение этой системы существует, и произвол её определяется характером Sn . Геометрические объекты Γ1={}, Γ2={ Γ1,} являются фундаментальными геометрическими объектами[3] SH –распределения.
§ 2. Инвариантные нормализации основных структурных подрасслоений SH-распределения
1. Из уравнений (2) следует, что совокупности функций {}, {}, {} = {} образуют в силу строения SH-распределения невырожденные фундаментальные тензоры 1-го порядка соответственно Λ-, L-, Н-подрасслоений:
(4)
для которых можно ввести обращенные фундаментальные тензоры 1-го порядка, удовлетворяющие соответсвенно условиям:
2. В каждом центре А0 нормаль 1-го рода Nn-m(A0) образующего элемента Λ-подрасслоения определим следующим образом:
Nn-m (A0) = [Ln-m-1(A0), Ln], Ln=.
Требование инвариантности плоскости Nn-m(A0) приводит к уравнениям:
(5)
а на величины {} это требование никаких условий не накладывает. Однако если потребовать инвариантность прямой = [A0,Ln], то величины {} должны удовлетворять условиям
(6)
Охват квазитензора {} (6) можно осуществить таким образом: , где
,
В дальнейшем будем считать что прямая l() = [A0, Ln] инвариантна, т. е. в качестве точки Ln можно взять
,
где величины {} удовлетворяют уравнениям (5). Задание поля квазитензора {} определяет поле поле инвариантных прямых = [A0,], а следовательно, поле инвариантных нормалей 1-го рода Nn-m = [Ln-m-1, Ln]. Подразумевая это, мы в дальнейшем под полем инвариантных нормалей 1-го рода Λ-подрасслоения будем понимать поле соответствующего квазитензора {}. В репере R0 уравнения инвариантной нормали 1-го рода Nn-m запишутся в виде:
.
Пусть нормаль 2-го рода Nm-1 плоскости Λ(А0) натянута на точки
.
Требование инвариантности нормали Nm-1 равносильно тому, что величины {}удовлетворяют уравнениям:
3. Зададим инвариантное поле нормалей 1-го рода Nn-m= [L(A0),] задано полем квазитензора {}. Следуя работе [4], с учетом формул (1), (2), (4), (5) найдем фокальное многообразие Nn-m(A0):
, (7)
полученное при смещении точки А0 вдоль кривых, принадлежащих полю Λ – плоскостей. Линейная поляра точки А0 относительно многообразия есть плоскость
: , (8)
где
.
Плоскость (8) пересекает:
а) плоскость L(A0) по её нормали 2-го рода Nn-m-2(A0):
; (9)
б) прямую = [A0,] в точке :
(10)
4. Пусть задано поле нормалей Nm+1(A0) 1-го рода L-подрасслоения, т. е. задано поле квазитензора {}. Здесь
Nm+1 (A0) = [Λ(А0), ],
где
,
Аналогично, следуя работе [4], с учетом формул (1), (2), (4), (5), (6), находим фокальное многообразие (N, L):
0, (11)
полученное при смещениях точки А0 вдоль кривых, принадлежащих L-подрасслоению. Линейная поляра точки А0 относительно многообразия Nm+1(A0) есть плоскость
Km (A0): , (12)
где
.
Плоскость (12) пересекает:
а) плоскость Λ(A0) по ее нормали 2-го рода Nm-1(A0):
; (13)
б) прямую = [A0,] в точке :
(14)
Следует заметить, что плоскость (8) является плоскостью Картана для образующего элемента Λ-подрасслоения, а плоскость (12) является плоскостью Картана для образующего элемента L-подрасслоения, в данном центре А0. Точки , соответсвенно назовем — виртуальными точками Картана прямых l(), .
§3. Соответствие Бомпьяни-Пантази
1. Плоскость , натянутую на нормали 2-го рода (9), (13) соответственно плоскостей L(A) и Λ(A), является плоскостью Нордена-Тимофеева неголономной композиции (Λ , L) [6]:
, , (15)
а с другой стороны плоскость (15) — нормаль второго рода Н-плоскости в точке . Введем в рассмотрение функции , которые удовлетворяют уравнениям (при фиксации точки ):
. (16)
Из (16) следует что совокупность функций {} образует квазинормаль [4], [8] H-подрасслоения. Согласно работе [5] соответствие Бомпьяни – Пантази между нормалями 1-го и 2-го рода Н-подрасслоения имеет вид
. (17)
Разрешив уравнения (17) относительно получим
,
где
, .
С помощью квазинормалей[8]
; ,
;,
введём в рассмотрение функции
; ,
; ,
и затем устанавливаем:
a) биекцию Бомпьяни-Пантази между нормалями 1-го и 2-го рода Λ-подрасслоения:
, ;
b) биекцию Бомпьяни-Пантази между нормалями 1-го и 2-го рода L-подрасслоения:
, .
Если охваты нормалей 1-го и 2-го рода Λ-, L-, Н-подрасслоений представить следующим образом
, ,,
тогда охваты функций
, , ,
определены в дифференциальной окрестности 1-го порядка, а охваты функций
определены в дифференциальной окрестности 2-го порядка. Из (17) следует, что
В результате приходим к следующему предложению:
Теорема 2. SH-распределение в дифференциальной окрестности 1-го порядка порождает внутренним инвариантным образом нормализацию Нордена-Тимофеева () Н-подрасслоения, нормализации Нордена (), () соответственно Λ- , L-подрасслоений, а в дифференциальной окрестности 2-го порядка поля - виртуальных точек Картана , и поля плоскостей Картана , .
Список литературы:
1.Вагнер В.В. Теория поля локальных гиперполос // Тр. семинара по вектор-н. и тензор-н. анализу/ М. — 950, — вып. 8, — с. 197—272.
2.Гохман А.В. Дифференциальная геометрия и классическая динамика систем.// Тр. геометр. семинара. /ВИНИТИ, — 1966, — Т. 1, — с. 111—138.
3.Лаптев Г.Ф. Дифференциальная геометрия погруженных многообразий. Теоретико-групповой метод дифференциальнно-геометрических исследований // Тр. Моск. Мат. Об-ва. — 1953. — Т. 2. — С. 275—382.
4.Лаптев Г.Ф. Остиану Н.М. Распределения m-мерных линейных элементов в пространстве проективной связности // Тр. геометр. Семинара /ВИНИТИ АН СССР — 1971. — Т. 3. — С. 49—94.
5.Остиану Н.М. Распределение гиперплоскостных элементов в проективном пространсве. // Тр. геометр. семинара/ВИНИТИ АН СССР. — 1973. — Т. 4. — С. 71—119.
6.Попов Ю.И. Основы теории трехсоставных распределений проективного пространства: Монография//Из-во С.-Петербургского ун-та, 1992. — 172 с.
7.Попов Ю.И. Столяров А.В. Специальные классы регулярных гиперполос проективного пространство. Учебное пособие, издание 2-ое. Изд-во БФУ им. Им. Канта, Калининград, 2011. — 122 с.
8.Cтоляров А.В. Проективно-дифференциальная геометрия регулярного гиперполосного распределения m-мерных линейных элементов. В кн.: Проблемы геометрии (Итоги науки и техн. ВИНИТИ АН СССР), М., — 1975, — Т. 7, — с. 117—151.
9.Столяров А.В. Дифференциальная геометрия полос// Проблемы геометрии. ВИНИТИ — 1978, — Т. 10, — с. 25—54.
10.Фиников С.П. Метод внешних форм Картана М.-П. ГИТТЛ, 1948. — 432 с.
дипломов
Оставить комментарий